Abstract
Metal-organic frameworks (MOFs) with intrinsic luminescent properties, modular structure, and tunable electronic properties, provide unique opportunities for designing target-specific molecular sensors by systematically choosing their constituent building blocks. We report a simple one-step MOF-based sensing platform for phosphate (P) detection that combines the luminescent properties of 2-aminoterephthalic acid (ATA) with the affinity of rationally selected nodes in UiO-66-NH2 to bind with P. This MOF possesses an electron-donating amine group that controls the light-harvesting characteristics of the linkers. Substituting Zr6 node with Ce6 or Hf6 results in a series of isostructural MOFs with distinct optical properties that are nonexistent in the unsubstituted MOF. We have utilized these MOFs to quantitatively measure P, using its ability to bind strongly to metal nodes inhibiting the LMCT process and altering the linker's photon emission. Using this system, detection limits of 4.5, 7.2 and 10.5 μM were obtained for the UiO-66-NH2(Ce), UiO-66-NH2, and UiO-66-NH2(Hf) respectively, adopting a straightforward single step procedure. These results demonstrate that the selection of metal nodes in a series of isostructural MOFs can be used to modulate their electronic properties and create sensing probes possessing the desired characteristics needed for the detection of environmental contaminants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.