Abstract

The fluorescence (FL) of calcium-discharged photoprotein (CaDP) can be altered by easily mutating CaDP without modifying coelenteramide (CLM), which is the decarboxylation product of coelenterazine in calcium-regulated photoprotein. The His22-Phe88-Trp92 triad (the ordering numbers of three amino acids are sorted by a crystal structure (PDB: 2F8P) of calcium-discharged obelin, i.e., CaDP-obelin) is closely related to CaDP-obelin FL, since it exists in close proximity to the 5-p-hydroxyphenyl of CLM. Therefore, it is important to thoroughly investigate how the mutations of this triad affect the emission color of CaDP-obelin FL. In this study, by mutating wild-type CaDP-obelin (WT) at the His22-Phe88-Trp92 triad, we theoretically constructed its nine mutants of separable FL colors. Through combined quantum mechanics and molecular mechanics (QM/MM) calculations and molecular dynamics (MD) simulations, the influence of the mutations of this triad on the CaDP-obelin FL was analyzed considering the H-bond effect and the charge effect. This study demonstrated that the mutations at the His22-Phe88-Trp92 triad redistribute the charges on the D-π-A molecule, CLM, change the charge transfer from the D to the (π + A) moiety, and thereby alter the FL emission. Appending more negative charges on the phenolate moiety of CLM benefits the FL redshift.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.