Abstract

The effect of replacing an Si atom of a silicon nanocone (SiNC) by Al or P atom on its electronic and field emission properties was investigated using density functional theory calculations. Molecular electrostatic potential surface indicates that the electrons do not spread out on the surface of SiNC evenly, and they tend to accumulate more at the apex, facilitating the electron emission from this site. Replacing an Si atom of the apex of nanocone by Al and P atoms is energetically more favorable than that of the wall by about 12.0 and 8.8 kcal/mol, respectively. Both Al- and P-doping processes increase the SiNC electrical conductivity, but the electron emission from the surface of SiNC increases after the P-doping and decreases by Al- doping. The electron emission in the P-doped SiNC is predicted to be about 600 times greater than that of the pristine SiNC at room temperature. The Al- or P-doping makes the SiNC a p-type or n-type semiconductor.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.