Abstract

In this study, the Bi-nonstoichiometric 0.99Bix(Na0.8K0.2)0.5TiO3-0.01SrTiO3 (BNKST) ceramics with x=0.5–0.535mol (Bi50-Bi53.5) were prepared by a conventional solid-state reaction method. The effects of Bi excess on structural transition and ferroelectric stability of BNKST ceramics were systematically investigated by the Raman spectra, dielectric analyses and electromechanical measurements. The introduction of excess Bi3+ could significantly break the long-range ferroelectric order and favor the presence of relaxor phase, then the ferroelectric-relaxor transition temperature (TFR) can be effectively tuned to around room temperature by Bi nonstoichiometry, giving rise to an enhanced room-temperature strain property. The positive strain Spos and dynamic piezoelectric constant d33* of Bi52.5 critical composition reach 0.33% and 440 pm/V, respectively at 6kV/mm. The high recoverable strain of Bi52.5 sample can be attributed to the electric-field-induced reversible relaxor-ferroelectric phase transition. The present work may be helpful for further understanding and designing high-performance NBT-based lead-free ceramics for piezoelectric actuator applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call