Abstract

Based on first-principles calculations, the electronic structures and magnetism are investigated in 3d transition metal (TM)-embedded porous two-dimensional (2D) C2N monolayers. Numerical results indicate that except Mn and Co atoms, other TM atoms can be embedded stably in the 2D C2N monolayer. Moreover, the magnetic moments of the TM-embedded C2N monolayer depend highly on the atomic number of the TM atoms. The Sc, Ti, V, Cr, Mn, Fe, Co and Ni atom-embedded C2N monolayers possess a ferromagnetic ground state, while embedding Cu can induce paramagnetic characteristics in the 2D C2N monolayer. Meanwhile, the Zn-embedded C2N monolayer exhibits a nonmagnetic ground state. These results indicate that the magnetism of 2D C2N monolayers can be tuned via embedding TM atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.