Abstract

Periodic density functional theory was employed to investigate the impact of chemical modifications on the properties of π-conjugated acenedithiophene molecular crystals. Here, we highlight the importance of the β-methylthionation effect, the position of the sulfur atoms of the thiacycle group and their size, and the number of central benzene rings in the chemical modification strategy. Our results show that the introduction of the methylthio groups at the β-positions of the thiophene and the additional benzene ring at the center of the BDT crystal structure are a promising strategy to improve the performance of organic semiconductors, as observed experimentally. We found that β-MT-ADT exhibits large charge carrier mobility, which is in good agreement with the experimental results and comparable to that of rubrene. In addition, the electronic and optical properties of these ambipolar materials suggest promising performances with β-MT-ADT > ADT >β-MT-NDT > NDT > BEDT-BDT >β-MT-BDT > BDT. Moreover, functionalization with thiacycle-fused sulfur atoms of different sizes and numbers improve the properties of BDT but is still less efficient than the methylthionation effect. Overall, our findings suggest a promising molecular modification strategy for possibly high performance ambipolar organic semiconducting materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call