Abstract

Spin-polarized first-principles calculations have been performed to tune the electronic and optical properties of graphene (G) and boron-nitride (BN) quantum dots (QDs) through molecular charge-transfer using tetracyanoquinodimethane (TCNQ) and tetrathiafulvalene (TTF) as dopants. From our results, based on the formation energy and the distance between QDs and dopants, we infer that both the dopants are physisorbed on the QDs. Also, we find that GQDs interact strongly with the dopants compared to the BNQDs. Interestingly, although the dopants are physisorbed on QDs, their interactions lead to a decrement in the HOMO-LUMO gap of QDs by more than half of their original value. We have found a spin-polarized HOMO-LUMO gap in certain QD-dopant complexes. Mülliken population analysis, generation of density of states (DOS) and projected DOS (pDOS) plots, and optical conductivity calculations have been performed to support and understand the reasons behind our findings.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call