Abstract
The electronic and magnetic properties of h-BN nanoribbions embedded with graphene nanoflakes (CBNNRs) are systematically studied by ab initio calculations. The CBNNRs with zigzag or armchair edges are all bipolar magnetic semiconductors (BMSs). The band gaps of zigzag CBNNRs (zCBNNRs) change linearly with the transverse electric field (E-field) for the first-order Stark effect, whereas for the armchair CBNNRs (aCBNNRs), the band gaps vary quadratically with the E-field for the second-order Stark effect. For zCBNNRs and aCBNNRs, they could transform from BMS to spin gapless semiconductor (SGS), metal, and half-metal (HM) under different transverse E-fields. The CBNNRs may transform into a semiconductor or HM, under the same E-fields, depending on the position of graphene flakes. The CBNNRs introduce local magnetic moment at carbon atoms, and the magnetic moment is determined by the size of the graphene flakes. These observations open the door to applications of CBNNRs in spintronic devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.