Abstract

In this first-principles study, we present density-functional calculations of the electronic structures and electron transport properties of organic molecular junctions with several anchoring groups containing atoms with different electronegativities, i.e., benzenediboronate (BDB), benzenedicarboxylate (BDC), and dinitrobenzene (DNB) molecular junctions sandwiched between two Cu(110) electrodes. The electronic-structure calculations exhibit a significant difference in the density of states not only at the anchoring groups but also at the aromatic rings of the molecular junctions, suggesting that the electron transport is specific for each system. Our transport calculations show that the BDB and DNB molecular junctions have finite electron transmissions at the zero-bias limit while the BDC molecular junction has a negligible electron transmission. Moreover, for the BDB and DNB systems, the electron transmission channels around the Fermi energy reveal fingerprint features, which provide specific functionalities for the molecular junctions. Therefore, our theoretical results demonstrate the possibility to precisely tune the electron transport properties of molecular junctions by engineering the anchoring groups at the single-atom level.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call