Abstract

Manipulating the electrical properties of carbon nanotubes through semi-metal or semiconductor filling is of paramount importance in the realization of nano-electronic devices based on one dimensional composite materials. From low temperature electrical conductivity measurements of a network, of empty and filled double-walled carbon nanotubes (DWNT’s), we report a transition in electrical transport features from hopping to weakly activated conduction by HgTe filling and also semi-metallic conduction in selenium (Se) filled DWNT’s. Magneto-resistance (MR) studies of the filled DWNT’s show suppression of the hopping conduction and a signature of 3D weak localization for Se@DWNT’s at low temperatures and high magnetic fields. These results are discussed on the basis of strength of interaction between the filler material and the inner-walls of the host DWNT’s, which enhances the electronic density of states (DOS) in the material as well as the change in the property of the filler material due to constrained encapsulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.