Abstract

We fabricated Pt-containing granular metals by focused electron beam–induced deposition from the (CH3)3CH3C5H4Pt precursor gas. The granular metals are made of platinum nanocrystallites embedded in a carbonaceous matrix. We exposed the as-grown nanocomposites to low-energy electron beam irradiation and measured the electrical conductivity as a function of irradiation dose. Postgrowth electron beam irradiation transforms the matrix microstructure and thus the strength of the tunneling coupling between Pt nanocrystallites. For as-grown samples (weak tunnel coupling regime) we find that the temperature dependence of the electrical conductivity follows the stretched exponential behavior characteristic of the correlated variable-range hopping transport regime. For briefly irradiated samples (strong tunnel coupling regime) the electrical conductivity is tuned across the metal-insulator transition. For long-time irradiated samples the electrical conductivity behaves like that of a metal. In order to further analyze changes of the microstructure as a function of the electron irradiation dose, we carried out transmission electron microscope (TEM), micro-Raman spectroscopy, and atomic force microscopy (AFM) investigations. TEM pictures reveal that crystallite size in long-time irradiated samples is larger than that in as-grown samples. Furthermore, we do not have evidence of microstructural changes in briefly irradiated samples. By means of micro-Raman spectroscopy we find that by increasing the irradiation dose the matrix changes, following a graphitization trajectory between amorphous carbon and nanocrystalline graphite. Finally, by means of AFM measurements we observe a reduction of the volume of the samples with increasing irradiation time, which we attribute to the removal of carbon molecules.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call