Abstract

Based on first‐principles calculations, it is found that the Dirac cone of Bi2Te3 film, which is buried in the bulk valence bands, can be tuned by the substitutional nonmagnetic atoms. It is found that substituting the Bi layer at the two ends of Bi2Te3 films with group III atoms Al, Ga, In and Tl, which have lower electronegativity than Bi atoms, can lead to an isolated Dirac cone with the Dirac point shifted into the bulk band gap and located on the Fermi level. Substituting the more electronegative Se, S and O atoms for Te atoms at the top and bottom layers of Bi2Te3 film, only the most electronegative O atoms give rise to a nearly ideal Dirac cone. The charge distribution of the resulting isolated Dirac point state is concentrated at the Te layers facing the van der Waals layers and vanishes in the middle of the quintuple layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.