Abstract

AbstractThe controlled tuning of the characteristic dimensions of two‐dimensional arrays of block‐copolymer reverse micelles deposited on silicon surfaces is demonstrated. The polymer used is polystyrene‐block‐poly(2‐vinylpyridine) (91 500‐b‐105 000 g mol–1). Reverse micelles of this polymer with different aggregation numbers have been obtained from different solvents. The periodicity of the micellar array can be systematically varied by changing copolymer concentration, spin‐coating speeds, and by using solvent mixtures. The profound influence of humidity on the micellar film structure and the tuning of the film topography through control of humidity are presented. Light scattering, atomic force microscopy, scanning electron microscopy, transmission electron microscopy, and X‐ray photoelectron spectroscopy were used for characterization. As possible applications, replication of micellar array topography with polydimethylsiloxane and post‐loading of the micelles to form iron oxide nanoparticle arrays are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.