Abstract

Cuprous (I) oxide (Cu2O) was used instead of Cupric (II) oxide (CuO) for the synthesis of CCTO ceramic by solid-state reaction. The impact of sintering time on the structure stability, grain size, and dielectric performance of Cu2O-based CCTO ceramics was discussed. XRD analysis indicates that the CaCu3Ti4O12 cubic phase was successfully synthetized. The studied samples manifested high permittivity and quite low dielectric loss values in the frequency range (20–106 Hz); with optimum values of 15,423 and 0.083 respectively achieved after sintering at 1050 °C for 14 h while for longer sintering times of 19 h and 24 h resulted in higher values of permittivity of 19,943 and 21,392 respectively were obtained and associated with an improved loss tangent of ∼0.114 and 0.127, respectively. It was found that a longer sintering time of Cu2O-based CCTO ceramics resulted in an important improvement of the dielectric properties.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call