Abstract

The coverage, thickness, and crystallinity of ZnIn2S4 (ZIS) shells on SiO2 core nanoparticles (SiO2@ZIS) were systematically investigated using microwave-assisted solvothermal methods aided by the addition of acid in ethanolic medium. The surface modification of the SiO2 cores with (3-mercaptopropyl)trimethoxysilane was found to be critical to generate a homogeneous coverage of ZnIn2S4. The SiO2@ZIS core-shell nanoparticles exhibited the best coverage but poor crystallinity when synthesized in pure ethanol, whereas best crystallinity but poor coverage was observed when synthesized in an aqueous solution. The addition of selected amounts of acid (HCl) led to improved crystallinity in the ethanolic medium. The thickness of the ZIS shell could be controlled in an ethanolic solution by judiciously varying the amounts of acid and the concentration of the ZIS precursor. Increasing the concentration of the ZIS precursor to twice the standard concentration in ethanolic solution with the addition of 100 μL of HCl afforded better crystallinity, homogeneous coverage, and optimal photocatalytic hydrogen production.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.