Abstract

The cross-linking of conjugated polymers has been demonstrated to be an effective strategy to improve its elastic properties to give deformable semiconductors for plastic electronics. While there have been extensive studies of the structural requirements of the polymer host for good film ductility, no work to date has focused on the relevance of the structural design or chemistry of these cross-linker additives. In this study, urethane groups and tertiary carbon atoms are inserted into the alkyl backbone of perfluorophenyl azide-based cross-linkers to investigate the importance of cross-linker crystallinity with respect to polymer morphology and hence mechanical and electrical properties. Linear cross-linkers with hydrogen bonding from urethane groups readily phase separate and recrystallize in the polymer network to form cross-linked domains that obstruct the strain distribution of the polymer film. Branch cross-linkers with tertiary carbon on the other hand form an evenly cross-linked network in the pol...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.