Abstract
Acoustic microfluidic devices encompass mechanical, fluidic, and electromechanical domains. Complicated multidomain interactions require the consideration of each individual material domain, as well as coupled behaviors to achieve optimal performance. Herein, we report the co-optimization of components comprising an ultrasonic droplet generator to achieve the high-efficiency liquid atomization for operation in the 0.5-2.5-MHz frequency range. Due to the complexity of the real system, simplified 2-D representations of the device are investigated using an experimentally validated finite element analysis model. Ejection modes (i.e., frequencies at which droplet generation is predicted) are distinguished by maxima in the local pressure at the tips of an array of triangular nozzles. Resonance behaviors of the transducer assembly and fluid-filled chamber are examined to establish optimal geometric combinations concerning the chamber pressure field. The analysis identifies how domain geometries affect pressure field uniformity, broadband operation, and tip pressure amplitude. Lower frequency modes are found to focus the acoustic energy at the expense of field uniformity within the nozzle array. Resonance matching yields a nearly threefold increase in maximum attainable tip pressure amplitude. Significantly, we establish a set of design principles for these complex devices, which resembles a classical half-wave transducer, quarter-wave matching layer, and half-wave chamber layered system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.