Abstract

We show in this letter that the thermodynamic properties of helical peptides can be tuned by varying the degrees of backbone hydration. The latter was achieved by solubilizing peptides in the water pool of sodium bis(2-ethylhexyl) sulfosuccinate (AOT) reverse micelles with different water contents or w0 values. Far-UV circular dichroism measurements on a series of alanine-rich peptides indicate that the helicity of shorter peptides is significantly increased in AOT reverse micelles at low w0 values, as compared to the corresponding helical content in buffer. This result therefore corroborates the previous simulation studies suggesting that desolvation of backbone CO and NH groups increases the stability of monomeric helices. In addition, it was found that the thermal unfolding transition of these peptides can either be very noncooperative or very cooperative, depending on w0 and peptide chain length. A simple model, which considers the heterogeneous distribution of the water molecules inside the polar core of AOT reverse micelles as well as the geometric confinement effect exerted on the peptide by the reverse micelles, was used to interpret these results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call