Abstract

A post-growth chemical vapor deposition (CVD) treatment was used to tune the compressive mechanical properties of carbon nanotube (CNT) arrays. Millimeter tall CNT arrays with low compressive resilience were changed to a foam-like material with high compressive strength and almost complete recovery upon unloading. The foam was tuned to provide a range of compressive properties for various applications. The treated arrays demonstrated compressive strength up to 35× greater than the as-grown CNT array. Unlike polymeric foams, the CNT foam did not decompose after exposure to high temperatures. Investigation of the foam structure revealed that the CVD treatment increased CNT diameter through radial growth, while increasing the CNT surface roughness. The morphological changes help to explain the increase in CNT array compressive strength and the transition from permanent array deformation to foam-like recovery after compressive loading.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.