Abstract

We introduce a class of stiffness-tuning polymer composites and carefully examine the influence of electrical activation and temperature on stiffness for a wide range of use cases. The composites are composed of a polycaprolactone matrix embedded with a percolating network of acetylene carbon black or multi-walled carbon nanotubes. This work builds on previous efforts with thermally activated stiffness-switching composites, which can enable reliable, high-switching-ratio stiffness-switching devices that are stiff in the passive state and are not confined to specific geometries or layouts. Here, we systematically investigate the effects of filler type, filler concentration, and matrix polymer molecular weight on the critical properties of the stiffness-switching material. Using these parameters, we develop a composition selection guide, which we use to construct three different stiffness-switching applications: a highly extensible stiffness-switching tendon, a large area moldable sheet, and an electrically healable mechanical fuse.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.