Abstract

Three regioisomericaly pure 1,7-di-ethynyl bridged perylene-3,4,9,10-tetracarboxy tetrabutylesters functionalized with triisopropylsilyl-ethynylen (PTE1), phenyl-ethynylen (PTE2) and tetraphenylsilyl-ethynylen (PTE3) groups were synthesized. Photophysical, thermal, electrochemical, and solution processed electroluminescence (EL) behaviours were investigated in comparison with a basic perylene-3,4,9,10-tetracarboxy tetrabutylester (PTEref) structure. Stepwise π conjugation, allowed tuning the absorption and photoluminescence wavelengths of the PTEs without disturbing the photo, thermal and electrochemical stabilities; ≫10h, >250 °C, and >50 cycles, respectively. Electron mobility of PTE2 is measured to be more than 10-fold of the other PTE derivatives. Individual utilization of PTE derivatives as solid-state emitters in poly(N-vinylcarbazole) (PVK): 2-(4-Biphenylyl)-5-phenyl-1,3,4-oxadiazole (PBD) host matrix produced yellowish-green EL. Benefiting from higher electron mobiliy, PTE2 emitter presented the best device efficiency values with an EL maximum of 535 nm. Whereas dual doping of the synthesized PTEs with PTEref resulted in greenish-white light with increased stability. Although the emitting layer contained no red emitting component, optimization of the dual doping ratio of PTEref:PTE3 produced a colour rendering index value of 76 with Commission Internationale d'Eclairage coordinates of (0.29, 0.37).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.