Abstract

A series of color tunable Tb3+‐ and Eu3+‐activated Sr2P2O7 phosphors were synthesized by a traditional solid‐state reaction method in air atmosphere. The crystal structure, photoluminescence (PL) properties, energy transfer, thermal stability, and luminous efficiency were investigated. A series of characteristic emission of Tb3+ and Eu3+ were observed in the PL spectra and the variation in the emission intensities of the three emission peaks at around 416 nm (blue), 545 nm (green), and 593 nm (orange‐red) induced the multicolor emission evolution by tuning the Tb3+/Eu3+ content ratio. The energy‐transfer mechanism from Tb3+ to Eu3+ ion was determined to be dipole–dipole interaction, and the energy‐transfer efficiency was about 90%. The novel phosphors have excellent thermal stability in the temperature range of 77–473 K and the Commission International De L'Eclairage 1931 chromaticity coordinates of Sr2P2O7: Tb3+, Eu3+ (λex = 378 nm) move toward the ideal white light coordinates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call