Abstract
The homodimeric ATP-binding cassette (ABC) transport complex TAPL (transporter associated with antigen processing-like, ABCB9) translocates a broad spectrum of peptides from the cytosol into the lumen of lysosomes. The presence of an extra N-terminal transmembrane domain (TMD0) lacking any sequence homology to known proteins distinguishes TAPL from most other ABC transporters of its subfamily. By dissecting TAPL, we could assign distinct functions to the core complex and TMD0. The core-TAPL complex, composed of six predicted transmembrane helices and a nucleotide-binding domain, is sufficient for peptide transport, showing that the core transport complex is correctly targeted to and assembled in the membrane. Strikingly, in contrast to the full-length transporter, the core translocation complex is targeted preferentially to the plasma membrane. However, TMD0 alone, comprising a putative four transmembrane helix bundle, traffics to lysosomes. Upon coexpression, TMD0 forms a stable non-covalently linked complex with the core translocation machinery and guides core-TAPL into lysosomal compartments. Therefore, TMD0 represents a unique domain, which folds independently and encodes the information for lysosomal targeting. These outcomes are discussed in respect of trafficking, folding and function of TAPL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.