Abstract
Carbon nanofibers (CNFs) are a class of graphitic support materials with considerable potential for catalytic conversion of biomass. Earlier, we demonstrated the hydrolytic hydrogenation of cellulose over reshaped nickel particles attached at the tip of CNFs. The aim of this follow-up study was to find a relationship between the acid/metal balance of the Ni/CNFs and their performance in the catalytic conversion of cellulose. After oxidation and incipient wetness impregnation with Ni, the Ni/CNFs were characterized by various analytical methods. To prepare a selective Ni/CNF catalyst, the influences of the nature of oxidation agent, Ni activation, and Ni loading were investigated. Under the applied reaction conditions, the best result, that is, 76 % yield in hexitols with 69 % sorbitol selectivity at 93 % conversion of cellulose, was obtained on a 7.5 wt % Ni/CNF catalyst prepared by chemical vapor deposition of CH(4) on a Ni/γ-Al(2)O(3) catalyst, followed by oxidation in HNO(3) (twice for 1 h at 383 K), incipient wetness impregnation, and reduction at 773 K under H(2). This preparation method leads to a properly balanced Ni/CNF catalyst in terms of Ni dispersion and hydrogenation capacity on the one hand, and the number of acidic surface-oxygen groups responsible for the acid-catalyzed hydrolysis on the other.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.