Abstract
AbstractIn this work, we prepared a series of electron donor‐acceptor systems based on spiro[fluorene‐9,7’‐dibenzo[c,h]acridine]‐5’‐one (SFDBAO). Our SFDBAOs consist of orthogonally positioned fluorenes and aromatic ketones. By fine‐tuning the substitution of electron‐donating pyrenes, the complex interplay among different excited‐state decay channels and the overall impact of solvents on these decay channels were uncovered. Placing pyrene, for example, at the aromatic ketones resulted in a profound solvatochromism in the form of a bright charge‐transfer (CT) emission spanning from yellow to red‐NIR. In contrast, a dark non‐emissive CT was noted upon pyrene substitution at the fluorenes. In apolar solvents, efficient triplet‐excited state generation was observed for all SFDBAOs. Either charge transfer was concluded to mediate the intersystem crossing (ISC) in the case of pyrene substitution or the El‐Sayed rule was applicable when lacking pyrene substitution as in the case of SFABAO. In polar solvents, charge separation is the sole decay upon pyrene substitution. Moreover, competition between ISC and CT lowered the triplet‐excited state generation in SFDBAO.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.