Abstract

In this study, bulk Pr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">14</sub> B/ <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> -Fe nanocomposite magnets were fabricated from amorphous Pr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">9</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">86-<i>x</i></sub> <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">${\text {Cu}}_{x}\text{B}$ </tex-math></inline-formula> <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">5</sub> ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$x$ </tex-math></inline-formula> = 0–1.5 at.%) precursors by a rapid high-pressure thermal compression (HPTC) technique, and the effects of Cu content on the texture and magnetic properties of the deformed magnets were investigated systematically. Results showed that the magnetic anisotropy <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$A_{m}$ </tex-math></inline-formula> and remanence <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$B_{r}$ </tex-math></inline-formula> of the deformed magnets increase evidently with increasing Cu content, whereas the coercivity <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$H_{\mathrm {ci}}$ </tex-math></inline-formula> decreases dramatically, thereby resulting in the maximum energy product (BH) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> initial increase and then decrease. A magnetic anisotropy of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$A_{m}$ </tex-math></inline-formula> = 0.44 and the optimal magnetic properties of (BH) <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">max</sub> = 21.4 MGOe, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$B_{r}$ </tex-math></inline-formula> = 13.1 kG, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$H_{\mathrm {ci}}$ </tex-math></inline-formula> = 3.52 kOe were achieved at x = 1.0 at.%, which can mainly be attributed to the strong ( <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$00l$ </tex-math></inline-formula> ) crystallographic alignment of Pr <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sub> Fe <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">14</sub> B nanocrystals and excellent exchange coupling between hard and soft nanocrystals. The present research is important for developing anisotropic bulk nanocomposites with high-energy products.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call