Abstract

Inducing and controlling temperature gradients in illuminated subwavelength plasmonic structures is a challenging task. Here, we present a strategy to remotely induce and tune temperature gradients in a subwavelength metallic nanocone by adjusting the angle of incidence of linearly polarized continuous-wave illumination. We demonstrate, through rigorous three-dimensional numerical simulations, that properly tilting the incident illumination angle can increase or decrease the photoinduced temperature gradients within the nanostructure. We analyze the apex-base photoinduced temperature gradient for different illumination directions, resembling typical illumination schemes utilized in surface or tip-enhanced Raman spectroscopy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call