Abstract
Achieving colloidal and chemical stability in ferrofluids by surface modification requires multiple steps, including purification, ex situ modification steps, and operation at high temperatures. In this study, a single-step microwave-assisted methodology is developed for iron oxide nanoparticle (IONP) synthesis utilizing a series of imidazolium-based ionic liquids (ILs) with chloride, bis(trifluoromethylsulfonyl)imide, and pyrrolide anions as the reaction media, thus eliminating the use of volatile organics while enabling rapid synthesis at 80 °C as well as in situ surface functionalization. The characterized surface functionality, hydrodynamic particle size, magnetization, and colloidal stability of the IONPs demonstrate a strong dependence on the IL structure, ion coordination strength, reactivity, and hydrophilicity. The IONPs present primarily a magnetite (Fe3O4) phase with superparamagnetism with the highest saturation magnetization at 81 and 73 emu/g at 10 and 300 K, respectively. Depending on the IL coating, magnetization and exchange anisotropy decrease by 20 and 2-3 emu/g (at 35 wt % IL), respectively, but still represent the highest magnetization achieved for coated IONPs by a coprecipitation method. Further, the surface-functionalized superparamagnetic magnetite nanoparticles show good dispersibility and colloidal stability in water and dimethyl sulfoxide at 0.1 mg/mL concentration over the examined 3 month period. This study reports on the intermolecular and chemical interactions between the particle surface and the ILs under synthetic conditions as they relate to the magnetic and thermal properties of the resulting IONPs that are well suited for a variety of applications, including separation and catalysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.