Abstract
Soft-lithography-based techniques are widely used to fabricate microarrays. Here, the use of microcontact insertion printing is described, a soft-lithography method specifically developed for patterning at the dilute scales necessary for highly selective biorecognition. By carefully tuning the polar surface energy of polymeric stamps, problems associated with patterning hydrophilic tether molecules inserted into hydrophilic host self-assembled monolayers (SAMs) are surmounted. Both prefunctionalized tethers and on-chip functionalization of SAMs patterned by microcontact insertion printing enable the fabrication of small-molecule microarrays. Substrates patterned with the neurotransmitter precursor 5-hydroxytryptophan selectively capture a number of different types of membrane-associated receptor proteins, which are native binding partners evolved to recognize free serotonin. These advances provide new avenues for chemically patterning small molecules and fabricating small molecule microarrays with highly specific molecular recognition capabilities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.