Abstract

By employing nitronyl/imino nitroxide biradicals, three Ln-Zn complexes, namely, [Ln2Zn2(hfac)10(ImPhPyobis)2] (LnIII = Gd 1, Dy 2; hfac = hexafluoroacetylacetonate; ImPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene) and [Dy2Zn2(hfac)10(NITPhPyobis)2] 3 (NITPhPyobis = 5-(4-oxypyridinium-1-yl)-1,3-bis(1'-oxyl-3'-oxido-4',4',5',5'-tetramethyl-4,5-hydro-1H-imidazol-2-yl)benzene), have been successfully prepared. The three complexes possess {Ln2O2} cores bridged by the oxygen atoms of the 4-oxypyridinium rings of the biradical ligands and one of the imino/nitronyl nitroxide groups of the biradical is coordinated to a ZnII ion, then producing a centrosymmetric tetranuclear six-spin structure. The studies of spin dynamics indicate that complexes 2 and 3 exhibit distinct magnetic relaxation behaviors at zero dc field: complex 2 presents single relaxation with an effective energy barrier (Ueff) of 69.8 K, while complex 3 exhibits double relaxation processes with Ueff values for the fast and slow relaxation being 15.8 K and 50.9 K, respectively. The observed different magnetic relaxation behaviors for the two Dy complexes could be mainly ascribed to the influence of the distinct nitroxide biradical derivatives.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call