Abstract

Isolated metal atoms dispersed on the surface of a support material offer unique opportunities in heterogeneous catalysis. For example, this class of single-site catalysts uses precious metals with maximum efficiency. In addition, because of their relative simplicity compared with standard multiatom nanoparticle catalysts, single-atom supported catalysts allow researchers to deduce valuable mechanistic details far more easily. But the single-atom variety is tough to tailor. And although modifying catalyst synthesis methods sometimes improves performance, it’s not always clear why. A team led by Alper Uzun of Koc University and Bruce C. Gates of the University of California, Davis, reports that treating single-atom iridium complexes supported on γ-alumina with 1,3-dialkylimidazolium ionic liquids improves the complexes’ catalytic properties for reasons the team quantifies via high-resolution X-ray absorption spectroscopy (ACS Catal. 2017, DOI: 10.1021/acscatal.7b02429). Specifically, the team prepared atom...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.