Abstract

Aim of this work was to explore the possibility of retention and selectivity tuning in reversed-phase liquid chromatography by means of chemically modified multi-walled carbon nanotubes (MWCNTs). These were synthesized by derivatizing pristine MWCNTs with amino-terminated alkyl chains containing polar embedded groups. A novel hybrid material based on functionalized MWCNTs (MWCNTs-R-NH2) was prepared, characterized and tested. The idea was to design a mixed-mode separation medium basing its sorption properties on the peculiar characteristics of MWCNTs combined with the chemical interactions provided by the functional chains introduced on the nanotube skeleton. MWCNTs-R-NH2 were easily grafted to silica microspheres by gamma radiation (using a 60Co source) in the presence of polybutadiene as the linking agent. The composite was characterized by scanning electron microscopy (SEM) and Brunauer, Emmett and Teller (BET) analysis in terms of structural morphology, surface area and porosity. The MWCNTs-R-NH2 sorbent was tested as stationary phase. The reversed-phase behaviour was first proved by analysis of alkylbenzenes, while the key role of CNT derivatization in addressing the selectivity/affinity towards the solutes was evidenced by testing three classes of analytes, viz. barbiturates, steroid hormones and alkaloids. These compounds, with different molecular structure and polarity, were here analysed for the first time on CNT-based LC stationary phases. The behaviour of the novel sorbent was compared in terms of retention capability and resolution with that observed using unmodified MWCNTs, pointing out the mixed-mode characteristics of the MWCNTs-R-NH2 material. The same test mixtures were analysed also on a conventional mono-modal separation sorbent (C18) to highlight the particular behaviour of the (derivatized)MWCNTs-based stationary phases. The novel material showed better performance in separation of polar compounds, i.e. barbiturates and alkaloids, than the unmodified MWCNTs and than the C18 column. Results showed that MWCNT functionalization is powerful to modulate retention/selectivity in reversed-phase liquid chromatography.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call