Abstract

Exhibiting superior safety features and low costs, solid-state sodium (Na)-ion batteries have been proposed as an attractive candidate for energy storage. However, the poor rate capability of solid-state batteries has limited their applications. In this work, an all-solid-state Na-ion battery is fabricated, delivering an unprecedented rate capability (60% capacity retention at a C-rate of 100 C with an areal loading of 1.5 mg cm-2), which far exceeds other reports so far. More importantly, it is further demonstrated that instead of the Na-ion conductivity of the solid electrolyte, the rate-limiting factors are determined to be charge-transfer resistance at electrode/solid electrolyte interfaces and lack of percolation pathways in the electrode, which can be optimized by tuning the electrode design and testing protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call