Abstract

The modification of electronic structure can significantly affect electrocatalytic activity. An architecture art of Pt-skinned PtAg bimetallic nanotubes is successfully synthesized, delivering much higher catalytic activity and better stability toward methanol electrooxidation than PtAg bimetallic nanoparticles and commercial Pt/C catalysts. Theoretical studies reveal that the Pt skin on PtAg bimetallic nanotubes prominently optimize the electronic structure of Pt to greatly enhance the dissociative adsorption of methanol while increasing CO poisoning resistance for fast electrode kinetics, high catalytic current density and stability. This work offers a low Pt loading but highly active anode catalyst for direct methanol fuel cells, demonstrating that rationally tuning the electronic structure by well-controlling surface morphology in nanoscales could open new opportunities to greatly improve the electrocatalytic properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.