Abstract

Rechargeable aqueous zinc-ion batteries (ZIBs) have emerged as an alternative to lithium-ion batteries due to their affordability and high level of safety. However, their commercialization is hindered by the low mass loading and irreversible structural changes of the cathode materials during cycling. Here, a disordered phase of a manganese nickel cobalt dioxide cathode material derived from wastewater via a coprecipitation process is reported. When used as the cathode for aqueous ZIBs , the developed electrode delivers 98% capacity retention at a current density of 0.1Ag-1 and 72% capacity retention at 1Ag-1 while maintaining high mass loading (15mgcm-2). The high performance is attributed to the structural stability of the Co and Ni codoped phase; the dopants effectively suppress Jahn-Teller distortion of the manganese dioxide during cycling, as revealed by operando X-ray absorption spectroscopy. Also, it is found that the Co and Ni co-doped phase effectively inhibits the dissolution of Mn2+, resulting in enhanced durability without capacity decay at first 20cycles. Further, it is found that the performance of the electrode is sensitive to the ratio of Ni to Co, providing important insight into rational design of more efficient cathode materials for low-cost, sustainable, rechargeable aqueous ZIBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.