Abstract

In order to further improve the control effect of proportion integral differential (PID) control and linear quadratic regulator (LQC) control, and improve vehicle ride comfort and enhance body stability, the 7 DOF semi-active suspension model was established, and the fractional order PIλDμ-LQR controller was designed by combining fractional order PIλDμ control theory and LQR control theory. The semi-active suspension model in this paper is more complex, and there are many parameters in the controller. The optimal weighting coefficient of 12 vehicle smoothness evaluation indicators and parameters Kp, Ki, Kd, λ and μ in the controller were founded by NSGA-II algorithm. After optimization, the optimized parameters were brought into the controller for random pavement simulation. Compared to the traditional passive suspension, fractional order PIλDμ individual control and LQR separate control, the simulation results show that the effect of fractional order PIλDμ-LQR control is very significant. The evaluation index of vehicle smoothness has been significantly improved, and the use of fractional order PIλDμ-LQR control has significantly improved the working performance of the suspension and improved the smoothness of the vehicle. At the same time, the adjusting force output of the actuator is very balanced, which inhibits the roll of the body and improves the anti-roll performance. After simulation, the excellent performance of the designed fractional PIλDμ-LQR controller was verified, and the introduced NSGA-II algorithm played an important role in the controller parameter tuning work, which shows that the fractional order PIλDμ-LQR controller and NSGA-II algorithm cooperate with each other to achieve good control effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.