Abstract
In cancer classification, gene selection is one of the most important bioinformatics related topics. The selection of genes can be considered to be a variable selection problem, which aims to find a small subset of genes that has the most discriminative information for the classification target. The penalized support vector machine (PSVM) has proved its effectiveness at creating a strong classifier that combines the advantages of the support vector machine and penalization. PSVM with a smoothly clipped absolute deviation (SCAD) penalty is the most widely used method. However, the efficiency of PSVM with SCAD depends on choosing the appropriate tuning parameter involved in the SCAD penalty. In this paper, a firefly algorithm, which is a metaheuristic continuous algorithm, is proposed to determine the tuning parameter in PSVM with SCAD penalty. Our proposed algorithm can efficiently help to find the most relevant genes with high classification performance. The experimental results from four benchmark gene expression datasets show the superior performance of the proposed algorithm in terms of classification accuracy and the number of selected genes compared with competing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.