Abstract

Electronic properties of triangular and hexagonal nano-scale quantum dots (QDs) of Silicene and bilayer graphene are studied. It is shown that the low-energy edge-localized electronic states, existing within the size-quantized gap are easily tunable by electric field. The appearance and field evolution of the electronic gap in these zero energy states (ZES) is shown to be very sensitive to QD geometry that permits to design the field-effect scalable QD devices with electronic properties on-demand.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.