Abstract

If an unexpected vibration or force is expected to be generated during operation, a vibration mount must be installed beneath the support system. A mass-block can be considered to reduce the structure basement fundamental frequency of the basement. Thus, the efficiency of a single-mount or mass-block can be enhanced by implementing a single-mount module called a mass-block integrated mount module (MIMM). This study addressed the tuning process of multiple mount modules in a supported system by evaluating the mount module using the proposed total performance index, building on a previous evaluation method comprising the first and second performance indices. This index was subsequently applied to assess the control capability of MIMM concerning both the self-excitation of an electric power plant and basement input. The extended 3-degrees-of-freedom (3-d.o.f.) electric power generator model was applied to determine the best selection of the mechanical properties for the MIMM over the various mechanical parameter settings (ranging between 10 and 1000% of the original parameters) of the two sub-mounts. The simulation results demonstrate a reduction in the total performance index from 8.2, as calculated in a previous study, to 0.2. The novelty of the optimal MIMM conditions is confirmed by the simultaneous enhancement of both performance indices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call