Abstract

Extraction of phosphopeptides from rather complex biological samples has been a tough issue for deep and comprehensive investigation into phosphoproteomes. In this paper, we present a series of Ti-doped mesoporous silica (Ti-MPS) materials with tunable composition and controllable morphology for highly efficient enrichment of phosphopeptides. By altering the molar ratio of silicon to titanium (Si/Ti) in the precursor, the external morphology, Ti content, internal long-rang order, and surface area of Ti-MPS were all modulated accordingly with certain regularity. Tryptic digests of standard phosphoprotein α- and β-casein were employed to assess the phosphopeptide enrichment capability of Ti-MPS series. At the Si/Ti molar ratio of 8:1, the optimum enrichment performance with admirable sensitivity and capacity was achieved. The detection limit for β-casein could reach 10 fmol, and 15 phosphopeptides from the digest of α-casein were resolved in the spectrum after enrichment, both superior to the behavior of commercial TiO(2) materials. More significantly, for the digest of human placenta mitochondria, 396 phosphopeptides and 298 phosphoproteins were definitely detected and identified after enrichment with optimized Ti-MPS material, demonstrating its remarkable applicability for untouched phosphoproteomes. In addition, this research also opened up a universal pathway to construct a composition-tunable functional material in pursuit of the maximum performance in applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.