Abstract

The Au nanostructures have been coated with an ultra-thin films of amorphous aluminium oxide. Optical absorption spectra show the influence of the thickness of Al2O3 on plasmon resonance wavelength. The observed red-shift of the resonance location with the increase of the thickness of the Al2O3 film, can be explained by the change in the dielectric function of this film. It allows control of the optical spectra of the coated particles. In this paper we present a two ways for determinaton of optical paramaters of aluminium oxide ultra-thin films. The first one is based on a ellipsometry method, while in second approach a shift of plasmon resonance is used for computer simulations of films. The experimental data are in agreement with the results of the FDTD calculations, showing the possibility of both determining such a function for ultra-thin layers by the computer simulation method, as well as predicting the value of the dielectric constant depending on the thickness of the layer. The experimental data needed for the simulation was obtained in studies such as XRD, XPS, SEM and HR TEM. The proposed models can help to adjust the coating thickness to the desired plasmon resonance position.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.