Abstract
Intrinsic terahertz oscillations of the electronic current in the asymmetric triple-barrier resonant tunneling diode are investigated by means of the time-dependent Wigner-Poisson method. The current-voltage characteristics calculated for the nanodevice exhibits four separate bias voltage windows with the current oscillations, which are caused by two different mechanisms. One of these bias voltage windows, for which the electronic current oscillations stem from the negative feedback between the electronic current and the coupled quasi-bound states in the quantum wells embedded in the active region of the nanodevice, is considered in detail. It is demonstrated that the amplitude and frequency of the current oscillations in this bias voltage window depend on the coupling between the quasi-bound states formed in the quantum wells. Strength of this coupling is controlled by the thickness of the central barrier separating the quantum wells, which allows to tune the amplitude and frequency of the terahertz oscillations. Additionally, it was shown that the amplitude of the current oscillations can be tuned by shifting up or down the energy of the bottom of the wider quantum well. These properties suggest that the considered nanodevice may be of interest because of its possible application as tunable terahertz generator.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.