Abstract

Herein, a fine-tuning method is proposed for the spatial distributions of a mixed three-dimensional (3D) ion system in dual radio frequency (RF) linear Paul traps to achieve efficient sympathetic cooling. The dual RF field matching, efficient capture method and transient process of the intrinsic micromotion of the mixed ion system are analyzed quantitatively by numerical simulations. The 3D correlation coupling characteristics between intrinsic micromotion and secular motion of ion system are obtained. It is found that reasonable low-frequency trapping potential can produce ultra-low-frequency pulling effect on ions with low mass-to-charge ratio (M/Q), which is beneficial to the dynamic coupling between ions with large M/Q differences. The effects of equivalent stiffness coefficients [Formula: see text] on the relative spatial configuration and dynamic coupling process of mixed 3D ion crystals with large M/Q differences are discussed. By tuning [Formula: see text], radial distributions of laser-cooled ions (LCIs) and sympathetically cooled ions (SCIs) that do not conform to the rules based on M/Q are realized. The optimum sympathetic-cooling efficiency occurs, where [Formula: see text] is approximately equivalent to [Formula: see text]. These results are applicable to studies such as cold ion clocks, quantum logic manipulation, antimatter synthesis, regulation of cold chemical reaction, and precise spectral measurements based on sympathetic cooling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.