Abstract

This laboratory has initiated compelling research into silicon quantum dot (Si QD) solids in order to utilize their synergetic benefits with quantum dot solids through fabrication of Si QD thin films. The issues of oxidation concerning the Si QD thin films were confirmed using Fourier transform infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS). The refractive index value of the Si QD thin film at a 30 degrees C curing temperature was 1.61 and 1.45 at 800 degrees C due to complete oxidation of the Si phases. The optical band gap values of 5.49-5.90 eV corresponded to Si phases with diameters between 0.82 and 0.74 nm, dispersed throughout the oxidized Si QD thin films and modeled by Si molecular clusters of approximately 14 silicon atoms. The photoluminescence (PL) energy (2.64-2.61 eV) in the proposed Si QD thin films likely originated from the Si horizontal lineO bond terminating the Si molecular clusters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.