Abstract

We report the first experimental parametric analysis of subwavelength monolithic high-contrast grating (MHCG) mirrors. To date, subwavelength grating mirrors have been fabricated by suspending a thin grating membrane in the air or placing it on a low refractive index material - a scheme that requires sophisticated processing and makes the gratings sensitive to mechanical stress, impeding current injection, and heat dissipation if used in active devices. Inherently MHCGs are well suited for optoelectronic devices because they can be fabricated in all possible material systems. Here we demonstrate above 90% optical power reflectance, strong polarization discrimination. Based on experimental analysis aided by numerical simulations, we demonstrate the possibility of tuning the spectral characteristics of MHCGs reflectance for more than 200 nm via modification of the duty cycle of the MHCG stripes. We show our MHCG tuning method is convenient to define the properties of MHCG devices during the device processing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call