Abstract

Generalized Least Squares (least squares with prior information) requires the correct assignment of two prior covariance matrices: one associated with the uncertainty of measurements; the other with the uncertainty of prior information. These assignments often are very subjective, especially when correlations among data or among prior information are believed to occur. However, in cases in which the general form of these matrices can be anticipated up to a set of poorly-known parameters, the data and prior information may be used to better-determine (or “tune”) the parameters in a manner that is faithful to the underlying Bayesian foundation of GLS. We identify an objective function, the minimization of which leads to the best-estimate of the parameters and provide explicit and computationally-efficient formula for calculating the derivatives needed to implement the minimization with a gradient descent method. Furthermore, the problem is organized so that the minimization need be performed only over the space of covariance parameters, and not over the combined space of model and covariance parameters. We show that the use of trade-off curves to select the relative weight given to observations and prior information is not a form of tuning, because it does not, in general maximize the posterior probability of the model parameters, and can lead to a different weighting than the procedure described here. We also provide several examples that demonstrate the viability, and discuss both the advantages and limitations of the method.

Highlights

  • IntroductionGeneralized Least Squares (GLS, called least-squared with prior information). W

  • We show that the use of trade-off curves to select the relative weight given to observations and prior information is not a form of tuning, because it does not, in general maximize the posterior probability of the model parameters, and can lead to a different weighting than the procedure described here

  • Generalized Least Squares requires the assignment of two prior covariance matrices, the prior covariance of the data and the prior covariance of the prior information

Read more

Summary

Introduction

Generalized Least Squares (GLS, called least-squared with prior information). W. The GLS formulation is widely used in geotomography and geophysical imaging, the tuning of variance is typically implemented in a very limited fashion, through the use of trade-off curves [7]-[12] In this procedure, a scalar parameter q controls the relative size of Cd and Ch , that is, Ch (q) = qCh(0) , where Ch(0) is specified [20]. A more consistent approach is to apply Bayes theorem directly to estimate both the model parameters m and the covariance parameters q Such an approach has been implemented in the context of ordinary least squares [21] and the Markov chain Monte Carlo (MCMC) inversion method [22] (which is a computationally-intensive alternative to GLS). An important and novel result of this paper is a computationally-efficient procedure for tuning GLS in a Bayes-consistent manner

Bayesian Extenion of GLS
Solution Method and Formula for Derivatives
Examples with Discussion
Findings
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.