Abstract
Composed of a variable displacement pump and a constant displacement motor, the hydrostatic driving system is a kind of closed speed control system with adjustable displacement. It is widely used in the field of engineering vehicle and other fields. Based on an analysis of the constitution and mathematical model of the hydrostatic driving system, the present study tuned PID parameters by using the critical proportioning method and the optimization method of NCD respectively. Then a kind of fuzzy adaptive PID controller was designed on the basis of the traditional PID control and the fuzzy control theory. In the controller, fuzzy logic was used to realize online self-tuning of PID parameters according to the motor speed error and its derivative, so that the system could have better adaptive ability and strong disturbance resisting performance. The dynamic simulation was made in MATLAB/SIMULINK. The simulation results show that the optimization method of NCD has better tuning effect and the response performance of the fuzzy adaptive PID controller is better than that of the classic one. Besides, it should be noted that a drawback was found about the fuzzy adaptive PID control. On the basis of fixed scale factors, a group of quantification factors is appropriate for a specific input signal, but for other signals, the response of the system is not so ideal. A method of adjusting quantification factors according to input signal was adopted to solve the above problem. Automatic adjusting of quantification factors was realized, and this could ensure ideal response to all input signals.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.