Abstract

In this paper, we propose a systematic method for the efficient tuning of the performance index in Nonlinear Model Predictive Control (NMPC) of parameter-dependent systems. The quadratic cost function in NMPC is tuned by applying the inverse optimality conditions on the linear quadratic regulator designed for the linearized model using the Inverse Linear Quadratic (ILQ) regulator design method. This approach provides some tuning parameters that give a trade-off between the speed of the system’s response and the magnitude of the control input. We propose two systematic methods for the selection of parameter-dependent tuning parameter. This approach is applied to the speed control of mean-value model of Spark Ignition (SI) engines. Effectiveness of the proposed methods is elaborated in simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.