Abstract

This study demonstrates a one-step synthesis of poly(3,4-ethylenedioxythiophene) (PEDOT) in the presence of the methyl violet (MV) dye. The structural properties of PEDOT:peroxodisulfate were studied using Raman and MALDI-TOF spectroscopies. The use of the MV dye in the polymerization process resulted in a change in the typical irregular morphology of PEDOT:peroxodisulfate, leading to the formation of spherical patterns. SEM and TEM analyses revealed that increasing the dye concentration can produce larger spherical aggregates probably due to the hydrophobic and π-π interactions. These larger aggregates hindered the charge transport and reduced the electrical conductivity. Interestingly, at higher dye concentrations (0.05 and 0.075 M), the PEDOT:peroxodisulfate/MV films exhibited significantly improved antibacterial activity against Staphylococcus aureus and Escherichia coli. Furthermore, the PEDOT:peroxodisulfate films with the incorporated MV dye exhibited a well-defined and repeatable redox behavior. The remarkable amalgamation of their optical, electrochemical and antibacterial properties provides the PEDOT:peroxodisulfate/MV materials with an immensely diverse spectrum of applications, including in optical sensors and medical devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.