Abstract

A framework for tuning the parameters of model predictive controllers (MPCs) based on gradient-free optimisation (GFO) is proposed. Efficient calibration of MPCs is often a difficult task given the large number of tuning parameters and their non-intuitive correlation with the output response. We propose an efficient and systematic framework for the tuning of MPC parameters that can be implemented iteratively within the closed-loop setting. The performance of the proposed GFO-based algorithm is evaluated through its application to air-path control for diesel engines over simulations and experiments. We illustrate that the tuned parameters provide satisfactory tracking of reference trajectories over engine drive cycles with only a few iterations. Thereby, we extend existing MPC tuning approaches that calibrate parameters using step responses on the fuel rate and engine speed onto tuning over a full drive cycle response.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call